Family

Phacellophoridae

1 species

Phacellophora camtschatica, commonly known as the fried egg jellyfish or egg-yolk jellyfish, is a very large jellyfish in the family Phacellophoridae. This species can be easily identified by the yellow coloration in the center of its body which closely resembles an egg yolk, hence how it got its common name. Some individuals can have a bell close to 60 cm (2 ft) in diameter, and most individuals have 16 clusters of up to a few dozen tentacles, each up to 6 m (20 ft) long. A smaller jellyfish, Cotylorhiza tuberculata, typically found in warmer water, particularly in the Mediterranean Sea, is also popularly called a fried egg jellyfish. Also, P. camtschatica is sometimes confused with the Lion's mane jellyfish (Cyanea capillata).

It feeds primarily by collecting medusae and plankton with its tentacles, and bringing them into its mouth for digestion. It is capable of only limited motion, and mostly drifts with the current, even when swimming. This species and most of its relatives in the Cnidaria phylum often use suspension feeding as their main food gathering strategy.

The body of this jellyfish does not contain any respiratory, circulatory, or excretory systems. Instead, it uses its large surface area to accomplish these things. Also, this species (and all others in the phylum cnidaria) lack a mesoderm and instead uses mesoglea. Therefore, there are not three true tissue layers, in turn making this species (and all other cnidarians) diploblastic not triploblastic.

The reproduction and life cycle of this jellyfish has been well documented. It mostly follows the same life cycle as other members in the class Scyphozoa. It alternates between a polyp form that reproduces asexually and a medusa form that reproduces sexually. These jellyfish are a cool water species found in most of the world’s oceans, but most commonly in the Northern Pacific.

This cool-water species are found in many parts of the world's oceans even though the abundance of this species in open marine waters is relatively low. Though, it can be rather abundant in some parts of the Sea of Japan and the Sea of Okhotsk, especially near the shore where it was found to dominate in the southern part of this area. However, most individuals are found in isolation. It was also found in the western and eastern Bering Sea. Additionally, it constituted a noticeable proportion of jellyfish biomass in waters of the northern California Current.

In a study conducted in 2011, the egg-yolk jelly was found to aggregate mostly over deep basins, whereas in shallow areas a significant quantity of this species was found only off West Kamchatka, This is in stark contrast to the other members of the family Ulmaridae (since it is no longer a member) which prefer shallow water. This preference could be related to the bell size of the individual which ranges from 5–59 cm. This bell size likely allows the jellyfish to swim in deeper waters by resisting stronger water currents and pressure.

Also, jellyfish populations (including the egg-yolk jelly) are on the rise in degraded areas as a result of increased tolerance to detrimental factors. Additionally, jellyfish play a large role in the food web and can serve as indicators of ecosystem structure and function; The larger the jellyfish population, the greater the negative impact on ecosystem services.

The fried egg jellyfish typically moves faster during the day and swims fastest during flood tides. This jellyfish undergoes vertical migrations that span the water column throughout short and long time frames. These vertical migrations allow them to enter the low depth of the hypoxia zone.

This species typically resides below the pycnocline and avoids crossing the boundary layer, but they often dive into the hypoxic layer during the day when competition is high. By diving deep into the hypoxia zone, the fried egg jellyfish evades competition; unlike other species where hypoxia generally causes species to move away from the oxygen depleted zone, the fried egg jellyfish is able to withstand low oxygen levels for several hours at a time. And, with the belief that hypoxia regions will continue to grow, the fried egg jellyfish could thrive.

show less

Phacellophora camtschatica, commonly known as the fried egg jellyfish or egg-yolk jellyfish, is a very large jellyfish in the family Phacellophoridae. This species can be easily identified by the yellow coloration in the center of its body which closely resembles an egg yolk, hence how it got its common name. Some individuals can have a bell close to 60 cm (2 ft) in diameter, and most individuals have 16 clusters of up to a few dozen tentacles, each up to 6 m (20 ft) long. A smaller jellyfish, Cotylorhiza tuberculata, typically found in warmer water, particularly in the Mediterranean Sea, is also popularly called a fried egg jellyfish. Also, P. camtschatica is sometimes confused with the Lion's mane jellyfish (Cyanea capillata).

It feeds primarily by collecting medusae and plankton with its tentacles, and bringing them into its mouth for digestion. It is capable of only limited motion, and mostly drifts with the current, even when swimming. This species and most of its relatives in the Cnidaria phylum often use suspension feeding as their main food gathering strategy.

The body of this jellyfish does not contain any respiratory, circulatory, or excretory systems. Instead, it uses its large surface area to accomplish these things. Also, this species (and all others in the phylum cnidaria) lack a mesoderm and instead uses mesoglea. Therefore, there are not three true tissue layers, in turn making this species (and all other cnidarians) diploblastic not triploblastic.

The reproduction and life cycle of this jellyfish has been well documented. It mostly follows the same life cycle as other members in the class Scyphozoa. It alternates between a polyp form that reproduces asexually and a medusa form that reproduces sexually. These jellyfish are a cool water species found in most of the world’s oceans, but most commonly in the Northern Pacific.

This cool-water species are found in many parts of the world's oceans even though the abundance of this species in open marine waters is relatively low. Though, it can be rather abundant in some parts of the Sea of Japan and the Sea of Okhotsk, especially near the shore where it was found to dominate in the southern part of this area. However, most individuals are found in isolation. It was also found in the western and eastern Bering Sea. Additionally, it constituted a noticeable proportion of jellyfish biomass in waters of the northern California Current.

In a study conducted in 2011, the egg-yolk jelly was found to aggregate mostly over deep basins, whereas in shallow areas a significant quantity of this species was found only off West Kamchatka, This is in stark contrast to the other members of the family Ulmaridae (since it is no longer a member) which prefer shallow water. This preference could be related to the bell size of the individual which ranges from 5–59 cm. This bell size likely allows the jellyfish to swim in deeper waters by resisting stronger water currents and pressure.

Also, jellyfish populations (including the egg-yolk jelly) are on the rise in degraded areas as a result of increased tolerance to detrimental factors. Additionally, jellyfish play a large role in the food web and can serve as indicators of ecosystem structure and function; The larger the jellyfish population, the greater the negative impact on ecosystem services.

The fried egg jellyfish typically moves faster during the day and swims fastest during flood tides. This jellyfish undergoes vertical migrations that span the water column throughout short and long time frames. These vertical migrations allow them to enter the low depth of the hypoxia zone.

This species typically resides below the pycnocline and avoids crossing the boundary layer, but they often dive into the hypoxic layer during the day when competition is high. By diving deep into the hypoxia zone, the fried egg jellyfish evades competition; unlike other species where hypoxia generally causes species to move away from the oxygen depleted zone, the fried egg jellyfish is able to withstand low oxygen levels for several hours at a time. And, with the belief that hypoxia regions will continue to grow, the fried egg jellyfish could thrive.

show less