Bowfin
Kingdom
Phylum
Order
Family
Genus
SPECIES
Amia calva
Life Span
30 years
Weight
9750
344
goz
g oz 
Length
109
43
cminch
cm inch 

The bowfin (Amia calva) is a bony fish, native to North America. Common names include mudfish, mud pike, dogfish, grindle, grinnel, swamp trout, and choupique. It is regarded as a relict, being one of only two surviving species of the Halecomorphi, a group of fish that first appeared during the Early Triassic, around 250 million years ago. The bowfin is often considered a "primitive fish" because they have retained some morphological characteristics of their early ancestors. It is one of two species in the genus Amia, along with Amia ocellicauda, the eyespot bowfin. The closest living relatives of bowfins are gars, with the two groups being united in the clade Holostei.

Show More

Bowfins are demersal freshwater piscivores, commonly found throughout much of the eastern United States, and in southern Ontario and Quebec. Fossil deposits indicate Amiiformes were once widespread in both freshwater and marine environments across North and South America, Europe, Asia, and Africa. Now, their range is limited to much of the eastern United States and adjacent southern Canada, including the drainage basins of the Mississippi River, Great Lakes, and various rivers exiting in the Eastern Seaboard or Gulf of Mexico. Their preferred habitat includes vegetated sloughs, lowland rivers and lakes, swamps, and backwater areas; they are also occasionally found in brackish water. They are stalking, ambush predators known to move into the shallows at night to prey on fish and aquatic invertebrates such as crawfish, mollusks, and aquatic insects.

Like gars, bowfin are bimodal breathers – they have the capacity to breathe both water and air. Their gills exchange gases in the water allowing them to breathe, but they also have a gas bladder that serves to maintain buoyancy, and also allows them to breathe air by means of a small pneumatic duct connected from the foregut to the gas bladder. They can break the surface to gulp air, which allows them to survive conditions of aquatic hypoxia that would be lethal to most other species. The bowfin is long-lived, with age up to 33 years reported.

Show Less

Appearance

The typical length of a bowfin is 50 cm (20 in); females typically grow to 65–70 cm (26–28 in), males to 50–65 cm (20–26 in). They can reach 109 cm (43 in) in length, and weigh 9.75 kg (21.5 lb). Young of the year typically grow to 13–23 cm (5.1–9.1 in) by October. Females tend to grow larger than males.

Show More

The body of the bowfin is elongated and cylindrical, with the sides and back olive to brown in color, often with vertical bars and dark reticulations or another camouflaged pattern. The dorsal fin has horizontal bars, and the caudal fin has irregular vertical bars. The underside is white or cream, and the paired fins and anal fin are bright green. During larval stage, hatchlings from about 7–10 mm (0.28–0.39 in) total length are black and tadpole-like in appearance. At approximately 25 mm (0.98 in) total length they have been described as looking like miniature placoderms. They grow quickly, and typically leave the nest within 4 to 6 weeks after hatching. Young males have a black eyespot on the base of the tail (caudal peduncle) that is commonly encircled by an orange-yellowish border, while the female's is black, if present at all. It is thought the purpose of the eyespot is to confuse predators, deflecting attacks away from the head of the fish to its tail, which affords the bowfin an opportunity to escape predation. The bowfin is so named for its long, undulating dorsal fin consisting of 145 to 250 rays that runs from the middle of the back to the base of the tail.

The skull of the bowfin is made of two layers of skull, the dermatocranium and the chondrocranium. The chondrocranium layer cannot be seen because it is located below the dermal bones. The bowfin skull is made up of 28 fused bones, which compose the dermatocranium. The roof of the mouth is made up of three bones, the ectopterygoid, the palantine, and the vomer. They have two sets of teeth, including one set of larger sharp teeth coming out of the mandibular and premaxillary bones to grasp and control the prey. The other set of teeth, located posteriorly and connected to the hyomandibular bone, is made up of pharyngeal tooth patches, which are used for sorting out nutrients and grinding down larger pieces of food. Another three bones make up the lower jaw: the dentary, the angular, and the surangular. The cranial surface of the skull is made up of the nasals, the antorbital, the lacrimal, the parietal, the intertemporal, the post parietal, the supratemporal, the extra scapular, the post temporal, and the opercular. The entirety of the skull is attached to the girdle through another set of bones.

Bowfin are often referred to as "living fossils", or "primitive fish" because they retained some of the primitive characters common to their ancestors, including a modified (rounded externally) heterocercal caudal fin, a highly vascularized gas bladder lung, vestiges of a spiral valve, and a bony gular plate. The bony gular plate is located underneath the head on the exterior of the lower jaw between the two sides of the lower jaw bone. Other distinguishing characteristics include long, sharp teeth, and two protruding tube-like nostrils. Unlike all of the most primitive actinopterygians, the scales of bowfin differ in that they are not ganoid scales, rather they are large, single-layered cycloid scales closer in similarity to more derived teleosts.

Bowfin are physostomes, meaning they have a small "pneumatic duct" that connects their swim bladders to their digestrive tract. This allows them, like lungfish, to "breath" in two ways: they can extract oxygen from the water when breathing through their gills, but can also break the water's surface to breathe or gulp air through the pneumatic duct. When performing low-level physical activity, bowfin obtain more than half of their oxygen from breathing air. The fish have two distinct air-breathing mechanisms used to ventilate the gas bladder. Air breathing type I is consistent with the action of exhale / inhale exchange, stimulated by either air or water hypoxia, to regulate O2 gas exchange; type II air breaths are inhalation alone, which is believed to regulate gas bladder volume, to control buoyancy. Bimodal respiration helps bowfin survive and maintain their metabolic rate in hypoxic (low-oxygen) conditions. Bowfin air breath more frequently when they are in darkness, and correspondingly more active.

Bowfin blood can adapt to warm, acidic waters. The fish becomes inactive in waters below 10 °C (50 °F); at this temperature they breathe almost no air; however, with increasing temperature their air breathing increases. Their preferred temperature range is between 12–26 °C (54–79 °F), with 18 °C (64 °F) the temperature of maximum activity. Air breathing is at a maximum in the range 18.4–29.6 °C (65.1–85.3 °F). Bowfin do not use central chemoreceptor regulation for respiration control. Experiments manipulating the oxygen content, carbon dioxide content, and pH of bowfin extradural fluid did not affect breathing rate, heart rate, or blood pressure pointing to a lack of central chemoreceptor regulation. Instead, bowfin respiratory patterns respond to water oxygen content and water temperature, as water temperatures play a role in oxygen content. In the lab, bowfin showed an increase in the breathing rate when the temperatures were raised above 10°C. Bowfin also showed an increase in breathing rate when exposed to lower oxygen levels in the water.

Herpetologist W. T. Neill reported in 1950 that he unearthed a bowfin aestivating (in a dormant state) in a chamber 4 inches (10 cm) below the ground surface, 8 inches (20 cm) in diameter,.25 miles (0.4 km) from a river. It was further noted that flood levels had previously reached the area, and receded. It is not unusual for riverine species like bowfin to move into backwaters with flood currents, and become trapped when water levels recede. While aestivation is anecdotally documented by multiple researchers, laboratory experiments have suggested instead that bowfin are physiologically incapable of surviving more than three to five days of air exposure. However, no field manipulation has been performed. Regardless of the lack of evidence confirming the bowfin's ability to aestivate, it has been noted that bowfin can survive prolonged conditions of exposure to air because they have the ability to breathe air. Their gill filaments and lamellae are rigid in structure which helps prevent the lamellae from collapsing and aids gas exchange even during air exposure.

Show Less

Distribution

Geography

Continents
Biogeographical realms

Fossil deposits indicate amiiforms included freshwater and marine species that were once widely distributed in North America, South America, Eurasia and Africa. Today, bowfin (Amia calva) are the only remaining species in the order Amiiformes; they are demersal freshwater piscivores, and their range is restricted to freshwater environments in North America, including much of the eastern United States and adjacent southern Canada from the St. Lawrence River and Lake Champlain drainage of southern Ontario and Quebec westward around the Great Lakes in southern Ontario into Minnesota.

Show More

Historically, their distribution in North America included the drainage basins of the Mississippi River from Quebec to northern Minnesota, the St. Lawrence-Great Lakes, including Georgian Bay, Lake Nipissing and Simcoe, Ontario, south to the Gulf of Mexico; Atlantic and Gulf Coastal Plain from the Susquehanna River drainage in southeastern Pennsylvania to the Colorado River in Texas.

Bowfin prefer vegetated sloughs, lowland rivers and lakes, swamps, backwater areas, and are occasionally found in brackish water. They are well camouflaged, and not easy to spot in slow water with abundant vegetation. They often seek shelter under roots, and submerged logs. Oxygen-poor environments can be tolerated because of their ability to breathe air.

Show Less

Climate zones

Habits and Lifestyle

Lifestyle
Seasonal behavior

Diet and Nutrition

Bowfin are stalking, ambush predators that customarily move into the shallows at night to prey on fish, and aquatic invertebrates such as crawfish, mollusks, and aquatic insects. Young bowfin feed mostly on small crustaceans, while adults are mostly piscivorous, but also known to be opportunistic. Bowfin are remarkably agile, can move quickly through the water, and they have a voracious appetite. Their undulating dorsal fin propels them silently through the water while stalking their prey. The attack is straightforward and swift with a movement that lasts approximately 0.075 seconds. There were also some studies regarding the capacity of the bowfin to survive without food. In 1916, a female bowfin was starved for twenty months. It was the longest period that any vertebrate had been without food, as far the writer was aware during the observation. Some independent studies focus on the bowfin's ability to use organic material as a source of food and studied the structure of the gill raker. They concluded that it did not benefit from the organic material in the water because the gill rakers were short with blunt processes and a short space between them. Even bacteria could enter and exit through the gill easily. Its structure alone indicated that the Amia do not use microorganisms as a source of food.

Mating Habits

MATING BEHAVIOR

Bowfin spawn in the spring or early summer, typically between April and June, more commonly at night in abundantly vegetated, clear shallow water in weed beds over sand bars, and also under stumps, logs, and bushes.Optimum temperatures for nesting and spawning range between 16–19 °C (61–66 °F). The males construct circular nests in fibrous root mats, clearing away leaves and stems. Depending on the density of surrounding vegetation there may be a tunnel-like entrance at one side. The diameter of the nests commonly range between 39–91 cm (15–36 in), at a water depth of 61–92 cm (24–36 in).

Show More

During spawning season, the fins and underside of male bowfin often change in color to a bright lime green. The courtship/spawning sequence lasts one to three hours, and can repeat up to five times. Courtship begins when a female approaches the nest. The ritual consists of intermittent nose bites, nudges, and chasing behavior by the male until the female becomes receptive, at which time the pair lie side by side in the nest. She deposits her eggs while he shakes his fins in a vibratory movement, and releases his milt for fertilization to occur. A male often has eggs from more than one female in his nest, and a single female often spawns in several nests.

Females vacate the nest after spawning, leaving the male behind to protect the eggs during the eight to ten days of incubation. A nest may contain 2,000 to 5,000 eggs, possibly more. Fecundity is usually related to size of the fish, so it isn't unusual for the roe of a large gravid female to contain over 55,000 eggs. Bowfin eggs are adhesive, and will attach to aquatic vegetation, roots, gravel, and sand. After hatching, larval bowfin do not swim actively in search of food. During the seven to nine days required for yolk-sac absorption, they attach to vegetation by means of an adhesive organ on their snout, and remain protected by the parent male bowfin. Bowfin aggressively protect their spawn from the first day of incubation to a month or so after the eggs have hatched. When the fry are able to swim and forage on their own, they will form a school and leave the nest accompanied by the parent male bowfin who slowly circles them to prevent separation.

Bowfin reach sexually maturity at two to three years of age. They can live up to 33 years in the wild, and 30 years in captivity. Bowfin may live decades at adult size.

Show Less

Population

References

1. Bowfin Wikipedia article - https://en.wikipedia.org/wiki/Bowfin
2. Bowfin on The IUCN Red List site - https://www.iucnredlist.org/species/201942/2730796

More Fascinating Animals to Learn About